Winnington Park Primary School and Nursery

UKS2 Calculation Policy

Completed by: Jen Conheeney and Elizabeth Norris
Updated: Autumn 2023
Review date: Autumn 2024

Winnington Park Primary School

Power Maths calculation policy, UPPER KS2

KEY STAGE 2

In upper Key Stage 2, children build on secure foundations in calculation, and develop fluency, accuracy and flexibility in their approach to the four operations. They work with whole numbers and adapt their skills to work with decimals, and they continue to develop their ability to select appropriate, accurate and efficient operations.

Key language: decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number

Addition and subtraction: Children build on their column methods to add and subtract numbers with up to seven digits, and they adapt the methods to calculate efficiently and effectively with decimals, ensuring understanding of place value at every stage. Children compare and contrast methods, and they select mental methods or jottings where appropriate and where these are more likely to be efficient or accurate when compared with formal column methods.
Bar models are used to represent the calculations required to solve problems and may indicate where efficient methods can be chosen.

Multiplication and division: Building on their understanding, children develop methods to multiply up to 4 -digit numbers by single-digit and 2 -digit numbers.
Children develop column methods with an understanding of place value, and they continue to use the key skill of unitising to multiply and divide by 10 , 100 and I,000.
Written division methods are introduced and adapted for division by single-digit and 2 -digit numbers and are understood alongside the area model and place value. In Year 6, children develop a secure understanding of how division is related to fractions.
Multiplication and division of decimals are also introduced and refined in Year 6.

Fractions: Children find fractions of amounts, multiply a fraction by a whole number and by another fraction, divide a fraction by a whole number, and add and subtract fractions with different denominators. Children become more confident working with improper fractions and mixed numbers and can calculate with them.
Understanding of decimals with up to 3 decimal places is built through place value and as fractions, and children calculate with decimals in the context of measure as well as in pure arithmetic.
Children develop an understanding of percentages in relation to hundredths, and they understand how to work with common percentages: $50 \%, 25 \%, 10 \%$ and I\%.

Year 5

	Concrete	Pictorial	Abstract
Year 5 Addition			
Column addition with whole numbers	Use place value equipment to represent additions. Add a row of counters onto the place value grid to show $15,735+4,012$.	Represent additions, using place value equipment on a place value grid alongside written methods. I need to exchange 10 tens for a 100 .	Use column addition, including exchanges.
Representing additions		Bar models represent addition of two or more numbers in the context of problem solving.	Use approximation to check whether answers are reasonable. I will use $23,000+8,000$ to check.
Adding tenths	Link measure with addition of decimals. Two lengths of fencing are 0.6 m and 0.2 m .	Use a bar model with a number line to add tenths.	Understand the link with adding fractions. $\frac{6}{10}+\frac{2}{10}=\frac{8}{10}$

Subtracting decimals	Explore complements to a whole number by working in the context of length. $\begin{aligned} & 0.49 \mathrm{~m} \\ & 1 \mathrm{~m}-\square \mathrm{m}=\square \mathrm{m} \\ & I-0.49=? \end{aligned}$	Use a place column sub required. $5 \cdot 74-2 \cdot 25$ Exchange I tent Now subtract th Now subtract t	value grid to traction, inclu =? h for 10 hundredth he hundredths. he 2 tenths, then t - Tth - $\varnothing \varnothing$	represent the stages of ding exchanges where s. $\begin{array}{r}0 \cdot \text { Tth Hth } \\ \hline 5 \cdot{ }^{6} 7 \\ \hline 2 \cdot 4 \\ \hline 2 \cdot 2\end{array}$ he 2 ones $\begin{array}{rrr} 0 \cdot & \text { Tth Hth } \\ \hline 5 \cdot{ }^{6} 7 & 4 \\ -2 \cdot & 2 \\ \hline 3 \cdot & 4 & 9 \\ \hline \end{array}$	Use column subtraction, with an understanding of place value, including subtracting numbers with different numbers of decimal places.$3.921-3.75=?$0 \cdot Tth Hth 3 \cdot 9 2
Year 5 Multiplication					
Understanding factors	Use cubes or counters to explore the meaning of 'square numbers'. 25 is a square number because it is made from 5 rows of 5 . Use cubes to explore cube numbers.	Use images examples of \square -n- $\begin{aligned} & 8 \times 8=64 \\ & 8^{2}=64 \end{aligned}$	to explore ex square numb	xamples and nonbers.	Understand the pattern of square numbers in the multiplication tables. Use a multiplication grid to circle each square number. Can children spot a pattern?

	8 is a cube number.	12 is not a square number, because you cannot multiply a whole number by itself to make 12 .	
Multiplying by 10, 100 and I,000	Use place value equipment to multiply by 10 , 100 and $\mathrm{I}, 000$ by unitising.	Understand the effect of repeated multiplication by 10 . \square	Understand how exchange relates to the digits when multiplying by 10,100 and 1,000 . $\begin{aligned} & 17 \times 10=170 \\ & 17 \times 100=17 \times 10 \times 10=1,700 \\ & 17 \times 1,000=17 \times 10 \times 10 \times 10=17,000 \end{aligned}$
Multiplying by multiples of 10 , 100 and I,000	Use place value equipment to explore multiplying by unitising. 5 groups of 3 ones is 15 ones. 5 groups of 3 tens is 15 tens. So, I know that 5 groups of 3 thousands would be I5 thousands.	Use place value equipment to represent how to multiply by multiples of 10,100 and 1,000 .	Use known facts and unitising to multiply. $\begin{aligned} & 5 \times 4=20 \\ & 5 \times 40=200 \\ & 5 \times 400=2,000 \\ & 5 \times 4,000-20,000 \\ & 5,000 \times 4=20,000 \end{aligned}$

			$\begin{array}{llllll} & 1 & 2 & 7 & 4 & \\ \times & & & 3 & 2 \\ \hline & 2 & 5 & 4 & 8 & \\ \hline 3 & 8 & 2 & 2 & 0 & 1,274 \times 2 \\ \hline 4 & 0 & 7 & 6 & 8 \\ \hline 1 & & & & & \\ \hline 1,274 \times 30 \\ 1,274 & \times & 32 & & 40,768 & \end{array}$
Multiplying decimals by 10 ， 100 and I，000	Use place value equipment to explore and understand the exchange of 10 tenths， 10 hundredths or 10 thousandths．	Represent multiplication by 10 as exchange on a place value grid． $0 \cdot 14 \times 10=1.4$	Understand how this exchange is represented on a place value chart．
Year 5 Division			
Understanding factors and prime numbers	Use equipment to explore the factors of a given number． -・ロ日○日•日 $\begin{aligned} & 00000000 \\ & \hline 0000000 \end{aligned}$ $\begin{aligned} & 24 \div 3=8 \\ & 24 \div 8=3 \end{aligned}$ 8 and 3 are factors of 24 because they divide 24 exactly． $24 \div 5=4 \text { remainder } 4$	Understand that prime numbers are numbers with exactly two factors． $\begin{aligned} & 13 \div 1=13 \\ & 13 \div 2=6 r 1 \\ & 13 \div 4=4 r 1 \end{aligned}$ I and I3 are the only factors of 13 ． 13 is a prime number．	Understand how to recognise prime and composite numbers． I know that 3 I is a prime number because it can be divided by only I and itself without leaving a remainder． I know that 33 is not a prime number as it can be divided by I，3，II and 33. I know that I is not a prime number，as it has only I factor．

Dividing by multiples of 10 , 100 and I,000	Use place value equipment to represent known facts and unitising. 15 ones put into groups of 3 ones. There are 5 groups. $15 \div 3=5$ 15 tens put into groups of 3 tens. There are 5 groups. $150 \div 30=5$	Represent related facts with place value equipment when dividing by unitising. 180 is 18 tens. 18 tens divided into groups of 3 tens. There are 6 groups. $180 \div 30=6$ 12 ones divided into groups of 4. There are 3 groups. 12 hundreds divided into groups of 4 hundreds. There are 3 groups. $1200 \div 400=3$	Reason from known facts, based on understanding of unitising. Use knowledge of the inverse relationship to check. $\begin{aligned} & 3,000 \div 5=600 \\ & 3,000 \div 50=60 \\ & 3,000 \div 500=6 \end{aligned}$ $\begin{aligned} & 5 \times 600=3,000 \\ & 50 \times 60=3,000 \\ & 500 \times 6=3,000 \end{aligned}$
Dividing up to four digits by a single digit using short division	Explore grouping using place value equipment. $268 \div 2=?$ There is 1 group of 2 hundreds. There are 3 groups of 2 tens. There are 4 groups of 2 ones.	Use place value equipment on a place value grid alongside short division. The model uses grouping. A sharing model can also be used, although the model would need adapting.	Use short division for up to 4-digit numbers divided by a single digit.

Understanding the relationship between fractions and division	Use sharing to explore the link between fractions and division. I whole shared between 3 people. Each person receives one-third.	Use a bar model and other fraction representations to show the link between fractions and division. $1 \div 3=\frac{1}{3}$	Use the link between division and fractions to calculate divisions. $\begin{aligned} & 5 \div 4=\frac{5}{4}=1 \frac{1}{4} \\ & 11 \div 4=\frac{11}{4}=2 \frac{3}{4} \end{aligned}$
Year 6			
	Concrete	Pictorial	Abstract
Year 6 Addition			
Comparing and selecting efficient methods	Represent 7-digit numbers on a place value grid, and use this to support thinking and mental methods.	Discuss similarities and differences between methods, and choose efficient methods based on the specific calculation. Compare written and mental methods alongside place value representations. Use bar model and number line representations to model addition in problem-solving and measure contexts.	Use column addition where mental methods are not efficient. Recognise common errors with column addition.$32,145+4,302=?$TTh Th H T O 3 2 1 4 5 +4 3 0 2 7 5 1 6 5 Which method has been completed accurately? What mistake has been made? Column methods are also used for decimal additions where mental methods are not efficient.

			$\begin{array}{rrrrr} \mathrm{H} & \mathrm{~T} & \mathrm{O} \cdot \mathrm{Tth} \text { Hth } \\ \hline \mathrm{I} & 4 & 0 & \cdot & 0 \\ \mathrm{q} \\ + & 4 & \mathrm{q} \cdot & 8 & \mathrm{q} \\ \hline \mathrm{I} & 8 & \mathrm{q} \cdot & \mathrm{q} & 8 \\ \hline \end{array}$
Selecting mental methods for larger numbers where appropriate	Represent 7-digit numbers on a place value grid, and use this to support thinking and mental methods. $2,4 I I, 30 I+500,000=?$ This would be 5 more counters in the HTh place. So, the total is $2,911,301$. $2,4 I I, 30 I+500,000=2,9 I I, 30 I$	Use a bar model to support thinking in addition problems. $257,000+99,000=?$ I added IOO thousands then subtracted I thousand. 257 thousands +100 thousands $=357$ thousands $\begin{aligned} & 257,000+100,000=357,000 \\ & 357,000-1,000=356,000 \end{aligned}$ So, $257,000+99,000=356,000$	Use place value and unitising to support mental calculations with larger numbers. $\begin{aligned} & 195,000+6,000=? \\ & 195+5+1=201 \end{aligned}$ 195 thousands +6 thousands $=201$ thousands So, $195,000+6,000=201,000$
Understanding order of operations in calculations	Use equipment to model different interpretations of a calculation with more than one operation. Explore different results. $3 \times 5-2=?$	Model calculations using a bar model to demonstrate the correct order of operations in multi-step calculations.	Understand the correct order of operations in calculations without brackets. Understand how brackets affect the order of operations in a calculation. $\begin{aligned} & 4+6 \times 16 \\ & 4+96=100 \\ & (4+6) \times 16 \end{aligned}$

		$950,000-150,000$ That is 950 thousands - 150 thousands \square 150 800 So, the difference is 800 thousands. $950,000-150,000=800,000$	
Year 6 Multiplication			
Multiplying up to a 4-digit number by a single digit number	Use equipment to explore multiplications. 4 groups of 2,345 This is a multiplication: $\begin{aligned} & 4 \times 2,345 \\ & 2,345 \times 4 \end{aligned}$	Use place value equipment to compare methods.	Understand area model and short multiplication. Compare and select appropriate methods for specific multiplications. Method 3 Method 4
Multiplying up to a 4-digit number by a 2-digit number		Use an area model alongside written multiplication. Method I	Use compact column multiplication with understanding of place value at all stages.

Using knowledge of factors and partitions to compare methods for multiplications	Use equipment to understand square numbers and cube numbers. $\begin{aligned} & 5 \times 5=5^{2}=25 \\ & 5 \times 5 \times 5=5^{3}=25 \times 5=125 \end{aligned}$	Compare methods visually using an area model. Understand that multiple approaches will produce the same answer if completed accurately. Represent and compare methods using a bar model.	Use a known fact to generate families of related facts. Use factors to calculate efficiently. $\begin{aligned} & 15 \times 16 \\ = & 3 \times 5 \times 2 \times 8 \\ = & 3 \times 8 \times 2 \times 5 \\ = & 24 \times 10 \\ = & 240 \end{aligned}$
Multiplying by 10,100 and I,000	Use place value equipment to explore exchange in decimal multiplication.	Understand how the exchange affects decimal numbers on a place value grid.	Use knowledge of multiplying by 10,100 and I,000 to multiply by multiples of 10,100 and I,000. $\begin{aligned} 8 \times 100 & =800 \\ 8 \times 300 & =800 \times 3 \\ & =2,400 \\ 2.5 \times 10 & =25 \end{aligned}$

	Represent 0.3. Exchange each group of ten tenths. $0.3 \times 10=?$ 0.3 is 3 tenths. 10×3 tenths are 30 tenths. 30 tenths are equivalent to 3 ones.	T 0 $:$ Tth \cdot 3 0.3 $\times 10$ $=3$ $0.3 \times 10=3$	$\begin{aligned} 2.5 \times 20 & =2.5 \times 10 \times 2 \\ & =50 \end{aligned}$
Multiplying decimals	Explore decimal multiplications using place value equipment and in the context of measures. 3 groups of 4 tenths is 12 tenths. 4 groups of 3 tenths is 12 tenths. $1.3 \mathrm{~cm} \mathrm{l.3} \mathrm{~cm} \mathrm{l} .3 \mathrm{~cm} \mathrm{l} .3 \mathrm{~cm}$ $\begin{aligned} & 4 \times 1 \mathrm{~cm}=4 \mathrm{~cm} \\ & 4 \times 0.3 \mathrm{~cm}=1.2 \mathrm{~cm} \\ & 4 \times 1 \cdot 3=4+1 \cdot 2=5 \cdot 2 \mathrm{~cm} \end{aligned}$	Represent calculations on a place value grid.$\begin{aligned} & 3 \times 3=9 \\ & 3 \times 0.3=0 \cdot 9 \end{aligned}$T O \bullet Tth •(1) (1) \bullet (1) (1) Understand the link between multiplying decimals and repeated addition.	Use known facts to multiply decimals. $\begin{aligned} & 4 \times 3=12 \\ & 4 \times 0.3=1.2 \\ & 4 \times 0.03=0 \cdot 12 \\ & 20 \times 5=100 \\ & 20 \times 0.5=10 \\ & 20 \times 0.05=1 \end{aligned}$ Find families of facts from a known multiplication. I know that $18 \times 4=72$. This can help me work out: $\begin{aligned} & 18 \times 4=? \\ & 18 \times 0.4=? \\ & 180 \times 0.4=? \\ & 18 \times 0.04=? \end{aligned}$ Use a place value grid to understand the effects of multiplying decimals.

			Use an area model to link multiplication and division. $132=120+12$ $132 \div 6=20+2=22$
Dividing by a 2 digit number using factors	Understand that division by factors can be used when dividing by a number that is not prime.	Use factors and repeated division. $1,260 \div 14=?$ 1,260 \square $\begin{aligned} & 1,260 \div 2=630 \\ & 630 \div 7=90 \\ & 1,260 \div 14=90 \end{aligned}$	Use factors and repeated division where appropriate.
Dividing by a 2digit number using long division	Use equipment to build numbers from groups. 182 divided into groups of 13 . There are 14 groups.	Use an area model alongside written division to model the process. $377 \div 13=?$ 13 \square 13 \square 13 $377 \div 13=29$	Use long division where factors are not useful (for example, when dividing by a 2-digit prime number). Write the required multiples to support the division process. $377 \div 13=?$ $0 \times 131 \times 13 \quad 2 \times 13 \quad 3 \times 134 \times 135 \times 136 \times 137 \times 13 \quad 8 \times 13 \quad 9 \times 1310 \times 13$

			$\begin{array}{r} 13 \begin{array}{lll} \hline 3 & 7 & 7 \\ - & 1 & 3 \end{array} 0 \\ \hline 2 \end{array} 10$ A slightly different layout may be used, with the division completed above rather than at the side. Divisions with a remainder explored in problem-solving contexts.
Dividing by 10 , I 00 and I,000	Use place value equipment to explore division as exchange.	Represent division to show the relationship with multiplication. Understand the effect of dividing by 10,100 and 1,000 on the digits on a place value grid.	Use knowledge of factors to divide by multiples of $\mathrm{IO}, \mathrm{IOO}$ and $\mathrm{I}, 000$.

	Exchange each 0.1 for ten 0.01 s . Divide 20 counters by 10 . $0 \cdot 2$ is 2 tenths. 2 tenths is equivalent to 20 hundredths. 20 hundredths divided by 10 is 2 hundredths.	Understand how to divide using division by 10 , IOO and I,000. $12 \div 20=?$ \square \square ?	$40 \div 50=$ \square $\begin{aligned} & 40 \rightarrow+\square ?+5 \\ & 40 \rightarrow+5 \\ & 40 \div 5=8 \\ & 8 \div 10=0.8 \end{aligned}$ So, $40 \div 50=0.8$
Dividing decimals	Use place value equipment to explore division of decimals. 8 tenths divided into 4 groups. 2 tenths in each group.	Use a bar model to represent divisions. $4 \times 2=8$ $8 \div 4=2$ So, $4 \times 0.2=0.8$ $0.8 \div 4=0.2$	Use short division to divide decimals with up to 2 decimal places. $8 \longdiv { 4 \cdot 2 4 }$ $0 \cdot$ 8 $4 \cdot 4^{2} 4$ $0 \cdot 5$ $8 \longdiv { 4 \cdot { } ^ { 4 } 2 { } ^ { 2 } 4 }$ $0 \cdot 5 \quad 3$ 8 $4 \cdot{ }^{4} 2{ }^{2} 4$

