Winnington Park Primary School and Nursery

KSI Calculation Policy

Completed by: Jen Conheeney and Elizabeth Norris
Updated: Autumn 2023
Review date: Autumn 2024

Power Maths calculation policy, KS1

The following pages show the Power Maths progression in calculation (addition, subtraction, multiplication and division) and how this works in line with the National Curriculum. The consistent use of the CPA (concrete, pictorial, abstract) approach across Power Maths helps children develop mastery across all the operations in an efficient and reliable way. This policy shows how these methods develop children's confidence in their understanding of both written and mental methods.

KEY STAGE I

Children develop the core ideas that underpin all calculation. They begin by connecting calculation with counting on and counting back, but they should learn that understanding wholes and parts will enable them to calculate efficiently and accurately, and with greater flexibility. They learn how to use an understanding of 10 s and Is to develop their calculation strategies, especially in addition and subtraction.
Key language: whole, part, ones, ten, tens, number bond, add, addition, plus, total, altogether, subtract, subtraction, find the difference, take away, minus, less, more, group, share, equal, equals, is equal to, groups, equal groups, times, multiply, multiplied by, divide, share, shared equally, times-table

Addition and subtraction: Children first learn to connect addition and subtraction with counting, but they soon develop two very important skills: an understanding of parts and wholes, and an understanding of unitising 10 s , to develop efficient and effective calculation strategies based on known number bonds and an increasing awareness of place value. Addition and subtraction are taught in a way that is interlinked to highlight the link between the two operations.
A key idea is that children will select methods and approaches based on their number sense. For example, in Year I, when faced with I5-3 and I5-13, they will adapt their ways of approaching the calculation appropriately. The teaching should always emphasise the importance of mathematical thinking to ensure accuracy and flexibility of approach, and the importance of using known number facts to harness their recall of bonds within 20 to support both addition and subtraction methods.
In Year 2, they will start to see calculations presented in a column format, although this is not expected to be formalised until KS2. We show the column method in Year 2 as an option; teachers may not wish to include it until Year 3.

Multiplication and division: Children develop an awareness of equal groups and link this with counting in equal steps, starting with 2 s , 5 s and 10 s . In Year 2, they learn to connect the language of equal groups with the mathematical symbols for multiplication and division.
They learn how multiplication and division can be related to repeated addition and repeated subtraction to find the answer to the calculation.
In this key stage, it is vital that children explore and experience a variety of strong images and manipulative representations of equal groups, including concrete experiences as well as abstract calculations.
Children begin to recall some key multiplication facts, including doubles, and an understanding of the 2,5 and 10 times-tables and how they are related to counting.

Fractions: In Year I, children encounter halves and quarters, and link this with their understanding of sharing. They experience key spatial representations of these fractions, and learn to recognise examples and non-examples, based on their awareness of equal parts of a whole.
In Year 2, they develop an awareness of unit fractions and experience non-unit fractions, and they learn to write them and read them in the common format of numerator and denominator.

	Concrete	Pictorial	Abstract
Year I Addition	Counting and adding more Children add one more person or object to a group to find one more.	Counting and adding more Children add one more cube or counter to a group to represent one more. One more than 4 is 5 .	Counting and adding more Use a number line to understand how to link counting on with finding one more. One more than 6 is 7. 7 is one more than 6. Learn to link counting on with adding more than one. $5+3=8$
	Understanding part-part-whole relationship Sort people and objects into parts and understand the relationship with the whole. The parts are 2 and 4 . The whole is 6.	Understanding part-part-whole relationship Children draw to represent the parts and understand the relationship with the whole. The parts are I and 5. The whole is 6 .	Understanding part-part-whole relationship Use a part-whole model to represent the numbers. $\begin{aligned} & 6+4=10 \\ & 6+4=10 \end{aligned}$
	Knowing and finding number bonds within 10	Knowing and finding number bonds within 10	Knowing and finding number bonds within 10

Break apart a group and put back together to
find and form number bonds.

	Children use knowledge of counting to 20 to find a total by counting on using people or objects.	7 on the bus	$7+5=$
	Adding the Is Children use bead strings to recognise how to add the Is to find the total efficiently. $\begin{aligned} & 2+3=5 \\ & 12+3=15 \end{aligned}$	Adding the Is Children represent calculations using ten frames to add a teen and Is. $\begin{aligned} & 2+3=5 \\ & 12+3=15 \end{aligned}$	Adding the Is Children recognise that a teen is made from a 10 and some Is and use their knowledge of addition within 10 to work efficiently. $3+5=8$ So, $13+5=18$
	Bridging the 10 using number bonds Children use a bead string to complete a 10 and understand how this relates to the addition. 7 add 3 makes 10 . So, 7 add 5 is 10 and 2 more.	Bridging the 10 using number bonds Children use counters to complete a ten frame and understand how they can add using knowledge of number bonds to 10 .	Bridging the 10 using number bonds Use a part-whole model and a number line to support the calculation. $9+4=13$
Year I	Counting back and taking away	Counting back and taking away	Counting back and taking away

Subtraction | Children arrange objects and remove to find |
| :--- |
| how many are left. |
| I less than 6 is 5 . |
| 6 subtract 1 is 5 . |
| Finding a missing part, given a whole and |
| a part |
| Children separate a whole into parts and |
| understand how one part can be found by |
| subtraction. |

	Arrange two groups so that the difference between the groups can be worked out. 8 is 2 more than 6 . 6 is 2 less than 8. The difference between 8 and 6 is 2 .	Represent objects using sketches or counters to support finding the difference. $5-4=1$ The difference between 5 and 4 is 1 .	Children understand 'find the difference' as subtraction. $10-4=6$ The difference between 10 and 6 is 4 .
	Subtraction within 20 Understand when and how to subtract Is efficiently. Use a bead string to subtract Is efficiently. $\begin{gathered} 5-3=2 \\ 15-3=12 \end{gathered}$	Subtraction within 20 Understand when and how to subtract Is efficiently. $\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$	Subtraction within 20 Understand how to use knowledge of bonds within 10 to subtract efficiently. $\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$
	Subtracting 10 s and Is For example: 18-12 Subtract 12 by first subtracting the 10 , then the remaining 2. First subtract the 10 , then take away 2.	Subtracting 10 s and Is For example: 18-12 Use ten frames to represent the efficient method of subtracting 12 . First subtract the 10 , then subtract 2 .	Subtracting 10 s and Is Use a part-whole model to support the calculation. 19-14 $19-10=9$ $9-4=5$ So, $19-14=5$
	Subtraction bridging 10 using number bonds	Subtraction bridging 10 using number bonds	Subtraction bridging 10 using number bonds

Learn to make equal groups from a whole and find how many equal groups of a certain size can be made.

Sort a whole set people and objects into equal groups.

There are 10 children altogether.
There are 2 in each group.
There are 5 groups.

Sharing

Sharing
Share a set of objects into equal parts and work out how many are in each part.

There are 10 in total.
There are 5 in each group.
There are 2 groups.

Sharing

Sketch or draw to represent sharing into equal parts. This may be related to fractions.

Sharing

10 shared into 2 equal groups gives 5 in each group.

Year 2

	Concrete	Pictorial	Abstract
Year 2 Addition			
Understanding IOs and Is	Group objects into 10 s and Is . Bundle straws to understand unitising of 10 s .	Understand IOs and Is equipment, and link with visual representations on ten frames.	Represent numbers on a place value grid, using equipment or numerals.
Adding 10s	Use known bonds and unitising to add 10 s. (III) I know that $4+3=7$. So, I know that 4 tens add 3 tens is 7 tens.	Use known bonds and unitising to add IOs. I know that $4+3=7$. So, 1 know that 4 tens add 3 tens is 7 tens.	Use known bonds and unitising to add 10 s. $\begin{aligned} & 4+3=\square \\ & 4+3=7 \\ & 4 \text { tens }+3 \text { tens }=7 \text { tens } \\ & 40+30=70 \end{aligned}$
Adding a I-digit number to a 2-digit	Add the Is to find the total. Use known bonds within 10.	Add the Is.	Add the Is.

number using exchange			
Adding a multiple of 10 to a 2-digit number	Add the 10 s and then recombine. 27 is 2 tens and 7 ones. 50 is 5 tens. There are 7 tens in total and 7 ones. So, $27+50$ is 7 tens and 7 ones.	Add the 10 s and then recombine. 66 is 6 tens and 6 ones. $66+10=76$ A 100 square can support this understanding.	Add the 10 s and then recombine. $37+20=?$ $\begin{aligned} & 30+20=50 \\ & 50+7=57 \end{aligned}$ $37+20=57$
Adding a multiple of 10 to a 2-digit number using columns	Add the 10 s using a place value grid to support.	Add the 10 s using a place value grid to support.	Add the 10 s represented vertically. Children must understand how the method relates to unitising of 10 s and place value.

	 16 is I ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	 16 is I ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	T O I 6 3 0 4 6$\begin{aligned} & 1+3=4 \\ & 1 \text { ten }+3 \text { tens }=4 \text { tens } \\ & 16+30=46 \end{aligned}$
Adding two 2-digit numbers	Add the 10 s and Is separately. $5+3=8$ There are 8 ones in total. $3+2=5$ There are 5 tens in total. $35+23=58$	Add the 10 s and Is separately. Use a part-whole model to support. $\begin{aligned} & 11=10+1 \\ & 32+10=42 \\ & 42+1=43 \end{aligned}$ $32+11=43$	Add the 10 s and the Is separately, bridging 10 s where required. A number line can support the calculations.
Adding two 2-digit numbers using a place value grid	Add the Is. Then add the 10s.		Add the Is. Then add the 10s.

			$\begin{array}{r\|r\|} \mathrm{T} & \mathrm{O} \\ \hline 3 & 2 \\ +1 & 4 \\ \hline & 6 \\ \hline \end{array}$ $\begin{array}{r\|r} \mathrm{T} & 0 \\ \hline 3 & 2 \\ +1 & 4 \\ \hline 4 & 6 \\ \hline \end{array}$
Adding two 2-digit numbers with exchange	Add the Is. Exchange 10 ones for a ten. Then add the 10 s.		Add the Is. Exchange 10 ones for a ten. Then add the IOs. 0 3 6 +2 9 5 1
Year 2 Subtraction			

Subtracting multiples of 10	Use known number bonds and unitising to subtract multiples of 10 . $\otimes \otimes \not \Delta \phi \phi \phi \not \Delta \not \subset$ 8 subtract 6 is 2 . So, 8 tens subtract 6 tens is 2 tens.	Use known number bonds and unitising to subtract multiples of 10 . $10-3=7$ So, 10 tens subtract 3 tens is 7 tens.	Use known number bonds and unitising to subtract multiples of 10 . 7 tens subtract 5 tens is 2 tens. $70-50=20$
Subtracting a single-digit number	Subtract the Is. This may be done in or out of a place value grid.	Subtract the Is. This may be done in or out of a place value grid.	Subtract the Is. Understand the link between counting back and subtracting the Is using known bonds. $\begin{array}{rc} \mathrm{T} & 0 \\ \hline 3 & 9 \\ - & 3 \\ \hline & \\ \hline 3 & 6 \\ & \\ & 9-3=6 \\ 39-3=36 \end{array}$
Subtracting a single-digit number bridging 10	Bridge 10 by using known bonds. $35-6$ I took away 5 counters, then I more.	Bridge 10 by using known bonds. $35-6$ First, I will subtract 5, then I.	Bridge 10 by using known bonds. $\begin{aligned} & 24-6=? \\ & 24-4-2=? \end{aligned}$
Subtracting a single-digit	Exchange I ten for 10 ones. This may be done in or out of a place value grid.	Exchange I ten for 10 ones.	Exchange I ten for 10 ones.

value and columns	T 0 .88000 $00 \not \varnothing \varnothing$ 88000 $\varnothing \varnothing \varnothing \varnothing$ $\boxed{828}$ $38-16=22$		T O 4 5 -1 2 31 0 4 5 -1 2 3 3
Subtracting a 2-digit number with exchange		Exchange I ten for 10 ones. Then subtract the Is. Then subtract the 10 s .	Using column subtraction, exchange I ten for 10 ones. Then subtract the Is. Then subtract the 10 s .
Year 2 Multiplication			

Equal groups and repeated addition	Recognise equal groups and write as repeated addition and as multiplication. 3 groups of 5 chairs I5 chairs altogether	Recognise equal groups using standard objects such as counters and write as repeated addition and multiplication.	Use a number line and write as repeated addition and as multiplication. $\begin{aligned} & 5+5+5=15 \\ & 3 \times 5=15 \end{aligned}$
Using arrays to represent multiplication and support understanding	Understand the relationship between arrays, multiplication and repeated addition. 4 groups of 5	Understand the relationship between arrays, multiplication and repeated addition. 4 groups of 5 ... 5 groups of 5	Understand the relationship between arrays, multiplication and repeated addition.
Understanding commutativity	Use arrays to visualise commutativity. I can see 6 groups of 3 . I can see 3 groups of 6 .	Form arrays using counters to visualise commutativity. Rotate the array to show that orientation does not change the multiplication. This is 2 groups of 6 and also 6 groups of 2 .	Use arrays to visualise commutativity. $\begin{aligned} & 4+4+4+4+4=20 \\ & 5+5+5+5=20 \\ & 4 \times 5=20 \text { and } 5 \times 4=20 \end{aligned}$
Learning $\times 2, \times 5$ and $\times 10$ table facts	Develop an understanding of how to unitise groups of 2, 5 and 10 and learn corresponding times-table facts.	Understand how to relate counting in unitised groups and repeated addition with knowing key times-table facts.	Understand how the times-tables increase and contain patterns.

	- 3 groups of $10 \ldots 10,20,30$ $3 \times 10=30$	○○○○○○○○○○ ○○○○○○○○○○ ○○○○○○○○○○ $\begin{aligned} & 10+10+10=30 \\ & 3 \times 10=30 \end{aligned}$	
Year 2 Division			
Sharing equally	Start with a whole and share into equal parts, one at a time.	Represent the objects shared into equal parts using a bar model.	Use a bar model to support understanding of the division.

8 divided into 4 equal groups.
There are 2 in each group.
Using known
times-tables to
solve divisions

Understand the relationship between
multiplication facts and division.

